
Page 1/20

Weather effects:

Snow & Wind

You may not use this tutorial for any other purpose than learning, working or
having fun... In other words: You can use this tutorial for anything you’d like,

as long as it doesn’t involve both a hammer and a squirrel.

marchewkowy@gmail.com

Page 2/20

Hi there, all!

Welcome to another one of Koobare’s tiny tutorials, teaching you how to effectively and

efficiently use the best multimedia authoring tool ever - Multimedia Fusion 2 by Clickteam! The

main purpose of this tutorial is to help you create a stunning snow & wind effects for your

games, using the Sinewave movement from the Gwerdy Movement Pack.

As it was said in the first “Enhancing the Feel” tutorial (the one about creating a rain effect),

this series isn’t really about the “create a full game from scratch” approach. Nope, if you’re

looking for something like that – download the “Glob Wars”, “Smelly Claw”, “Fusion Player” or

“Catch the fruit” (by Andos) tutorials from Clickteam’s website. This series is about a

completely different thing – about focusing on creating a few particular game elements that will

be ready to implement into your own games and applications, helping you not only to enhance

the overall gameplay experience, but also teaching you a few tricks that might come in handy

somewhere in your game development process. Remember: this is all about tips & tricks for

you to use in your own game projects, so don’t be shy and just use them!

As it was just said – all we want to do here is to enhance the “feel” of our projects – by making

them seem more real and “alive”. To do so, we’re going to introduce two tiny effects, that can

not only add a little life to your game’s world, but can also be quite eye-pleasing and add a

little spice to your game’s graphical area. To achieve this, we’re going to use event groups,

buttons, counters, a bunch of active objects and – last but not least – the Gwerdy Movement

Pack add-on, that can be found in the “Download Center” corner of Clickteam’s website.

 Before you continue, be sure to obtain the Gwerdy Movement Pack!

• You can download the pack directly from Clickteam’s website, here:

http://www.clickteam.com/eng/downloadcenter.php?i=187

• If you don’t want to type in the whole address given above – just browse through the

“Download Center” area of Clickteam.com.

• If something’s wrong, or Clickteam’s website is currently having a short vacation,

seek out the pack on Gwerdy’s site:

http://www.gwerdy.com/products/mmf2_movements/index.php

 Be sure to send Gwerdy a big “thanks for the pack!” e-mail, if you wish!

Page 3/20

Part I: Setting up the application.

Before we even start… Please note that the “Weather effects: Snow & Wind” tutorial uses the

same application settings as the previous tutorial from “Enhancing the Feel” series – “Weather

effects: It’s raining!”. In other words: if you’ve been playing around with the “It’s raining!”

tutorial, you already have the required application prepared – just open the file, add a new

frame and go for Part II of this tutorial, skipping Part I. If you haven’t done the “It’s Raining”

tutorial – or if you enjoy a bit of repetition from time to time – let’s create our new base-app!

OK, let’s do it, then. Open Multimedia Fusion 2,

create a new application and save it onto your

hard drive (hint: turning the “autobackup” option

ON in MMF2’s preferences and – additionally –

saving some backups on your own can

sometimes be a good idea – we all know that

Windows isn’t exactly bug-proof, don’t we?). Go to your application’s Properties Toolbar (if it

didn’t open up by itself, right click on your application’s name in the Workspace Toolbar and

select “Properties” from the drop-down menu), and select the Window tab (second from the

left, the one with the little computer screen). Set the window size to 500x380. A standard

640x480 would work here well too, but – as I mentioned before, in one of the earlier tutorials –

I’m sometimes struck by this strange urge to work on window sizes different than the usual

640x480 or 800x600… So, let’s do it my way, shall we? After changing our window sizes

MMF2 should ask you whether you’d like to modify the size of your frames as well – click “yes”

(if – by some strange, twisted accident – MMF2 won’t ask you this question - just make our

first frame’s size identical to the size of our window: 500x380). Later on we’re going to create

a second frame (each effect will be shown in a separate frame), but let’s not think about this

now. When you’re done - continue to part two of this tutorial.

Part II: Creating buttons and counters. Setting up the objects for the Wind effect.

Once we have what we needed – a new application with a 500x380 frame – it’s time to import

and/or create all the needed objects. Let’s do this now. Firstly, make sure that you have the

“snap to grid” option turned off (check the “view” menu and search for the button).

Secondly, find the “weather2library.mfa” file (it was zipped into the same archive as this

.PDF tutorial) and open it. Enter the first frame from the library file. Select all the objects there

Page 4/20

(hint: press CTRL+A or find the Select All command in the Edit menu), copy them into your

application (fastest method? Use the CTRL+C and CTRL+V keyboard shortcuts, you could

also drag&drop objects between apps in the Workspace Toolbar area) and place them in a

way, that will make the “Sky_QB” quick backdrop perfectly fit the frame (if the “snap to grid”

option is turned off, there shouldn’t be any problems with this). Remember that if you

experience any problems with positioning, you can always use the cursor keys to move an

object by one pixel (just be sure to select it first).

 All TGF2 users: be advised!

• Please note that some of the objects created for this tutorial use alpha channels, a

feature that is unavailable in The Games Factory 2. TGF2 users should use basic

library objects or create their own graphics instead.

Once you’ve copied the library objects, our frame should look exactly like this (if it doesn’t…

well, then perhaps one of us has done something wrong):

Page 5/20

Time to see what objects do we have here. We’ve got two quick backdrops (one for the sky

and one for the ground – same way as in the “It’s raining!” tutorial), two active objects

portraying leaves (the “red_leaf” and “green_leaf” objects), one active object that will act as

our “leaf-creator” object (“leaves_generator” – it will help us create leaves, that are used to

indicate the wind’s strength), two counters (“wind_overall” and “wind_current” – the first one

has the “animation” display type set up, the second one is a typical horizontal bar counter),

and yet another active object – this one being really thin – vividly named “destroyer_line” (this

object will help us to control the number of leaves in the game, by destroying those that will be

flying right into it – having too many active objects at once on the screen can make some of

the older computers choke and die). And… That’s about it. At least when it comes to importing

objects. We still have to create a couple more on our own, though. Let’s do it now.

Let’s start with creating a simple String object. In case you didn’t know – a String object

stores and displays text strings, in a single-formatted fashion (e.g. you can’t underline single

words of the given text, you can only reformat the whole string at once – to have a greater

control over your text’s formatting, use one of the other texts objects, such as the Formatted

Text or the Rich Edit objects). Double-click on a blank spot in your Frame editor’s main work

area, or select the Insert > New Object command from the top menu. The “Create New

Object” dialog window will appear (take a look at the image below for a bit of visual aid).

Now, let’s find our String

object from the objects

list. Push the “S” button

on your keyboard to

scroll down to objects

beginning on the letter

“S”. Then, search the list

until you’ll find the String

object. Select it and click

the “OK” button.

When you’ll click somewhere on your unoccupied workspace, a new String object will be

created. Let’s set it up a bit, shall we? Click on the String object and go to the Properties

toolbar (if you’ve closed that toolbar, just right click on your String object and select the

“Properties” command). Go to the first tab (“Settings”) And change Paragraph 1 to “Wind

Power:“ (just click on that paragraph’s text and type “Wind Power:” in). Once that’s done, go

for the “Display options” tab (second tab from the left, the one with the monitor screen as it’s

Page 6/20

icon) and set the Anti-aliasing option ON. This will make our text a bit smoother. Now, let’s

voyage further on, click on the third tab from the left (the “Size / Position” tab) – we’ll set up

this String object’s coordinates on the screen. Just go to the “X” line and input 17. Then, let’s

edit the “Y” item, and set it to 18. Our String object should now spring onto it’s position. Last

thing before we move on: go to the first tab from the right (the “About” tab) and change the

string’s name to “wind_power_string”.

OK, we’ve just prepared our String object. Before we move on to the coding part, we’ll still

have to create a couple of buttons. Seven to be exact…Let’s do that know. Once again, open

the “Create a new object” dialog by right-clicking on an empty space in your Frame editor and

selecting the “Insert object” command from the drop-

down menu. Select the Button object from the object’s

list, press the OK button and click on an empty space in

your Frame editor. Go to the Properties toolbar and open

the “Settings” tab (first one to the left). Now, change the

button’s text to “Random” (if you need visual guidance,

check the image to the left) and check the “Disabled at

start” on. When that’s done, move on to the “About” tab

(first from the right) and change this button’s name to

“random_button”. Now, go to the “Size / Position” tab

(second from the left) and change the button’s X

Position to 320, Y Position to 13, Width to 64 and

Height to 21. The button should reposition itself.

OK, having the first button created – let’s have a go for the second one. Create a new button,

input “Player controlled” as it’s text and make sure that the “Disabled at start” option is OFF.

Yep, this button should be enabled when our frame starts, so don’t get confused here. Go to

the “Size / Position” tab (you should know where to find it by now, right?) and change this

button’s X Position to 320, Y Position to 34, Width to 115 and Height to 21. Last thing to do

here: open the “About” tab and change our second button’s name to “pcontrolled_button”.

Two down, five to go. Well, that seems quite a lot, doesn’t it? But don’t worry – we’re not going

to create them all in the same way as the above ones – setting their position, width and height

one by one. Nope, we’ll just create one more similarly and then – voila! – we’ll experience the

magic of cloning. Create a new button once again, set it’s text to “1” (yep, just the digit “one”).

Change this button’s X Position to 320, Y Position to 55, Width to 33 and Height to 26, then

change it’s name to “strength_button 1”.

Page 7/20

It’s now time for some cloning! Don’t worry,

you don’t have to own a degree in genetics,

nor your own sheep, to use MMF2’s cloning

system. It’s all a matter of a few clicks here

and there, totally Dolly-free. So, what’s

cloning all about? It’s as simple as it gets –

all you need to know about it, is that it

creates the given number of new objects identical to the one you’re. To clone our little button,

right-click on it and select the “Clone Object” command from the drop-down menu. The

“Clone Object” dialog should appear. Set the number of rows to 1, set the number of

columns to 5, and make sure that both the row spacing and column spacing are set to 0

pixels (if you need visual guidance, take a look at the image to the upper right and follow the

red arrows). Click “OK” when you’re done.

OK, so we now have five identical buttons standing in a row. Right-click on the second button,

counting from the left (and, by the way, notice that it’s name is “strength_button 2” - the

cloning system automatically renames freshly created clones). Select the “Edit” command

(unless you’ve been messing around with MMF2’s preferences, you can access the “Edit”

window by double-clicking on the given object). Set this button’s text to “2” (just the digit “two”)

and click the OK button. After that’s done, move on to the next button and repeat the

procedure, this time changing the text to “3”. Next button should be set to – of course – “4”

and I guess that I don’t really have to say what should you input as the fifth button’s text.

We now have seven buttons on the gamefield, waiting in

the upper-right corner for someone to script their actions

and conditions (take a look at the nice little image to the

right). Emmm, sorry Koobare, but…– some of you could

ask – what exactly do we need those buttons for? The

answer is quite simple: we need them to control our wind effect. To explain this in detail:

our wind effect will have five strength-states (“1” will stand for just a little gush of wind, “5” for

almost a hurricane) and two control modes. When the whole application is set to the “player

controlled” mode, the user will have to select one of the strength-states manually. In other

words: our user will become the lord of the weather (and if you’re not into that mythological

climate, think of Storm from the “X-Men” series)! When the “random” mode is switched on –

player will loose his abilities, and the whole wind system will be controlled by randomly

generated numbers. Seems simple, right? A bit even TOO simple! Something fishy around

here… An evil plot, a diabolical intrigue perhaps? Nope, it’s really just THAT simple.

Page 8/20

Since all our buttons are set up correctly, we can

continue. Time to play with all those features that the

Gwerdy Movement Pack has in stock for us! Select

the red_leaf object, go to the Properties toolbar and

open the Movement tab (third from the left). Click on

the movement selection list (the one with the Static

movement currently selected) and select the

Sinewave movement (note: the Sinewave movement

will be available ONLY if you have previously installed

the Gwerdy Movement Pack!). Now, let’s mess a bit

with those settings there. Change the Final X value to

-40 and the Final Y to 230. Set the Amplitude to 20.

Leave the Speed, Angular Velocity and Starting Angle

settings unbothered. When you’re done – move on!

Having the red_leaf set up, let’s not forget about the green_leaf object. Select it now, set off

for the Properties toolbar, select the Movement tab and change the movement type to

Sinewave movement. Just like with the red_leaf, a couple of lines before. Now, change the

Final X value to -40, Final Y to 170, set the Amplitude to 25 and Angular Velocity to 45.

You can click on the “Try movement” button if you wish, but that’s not necessary – we’ll soon

see all of this moving and floating around, once the programming part is complete.

Only one thing to do here before we go onto Part III… Remember that leaves_generator

object mentioned earlier? The one that was supposed to help us create leaves on runtime?

Sure you do. All we need to do here, is to give that leaves_generator thingy a nice Path

movement. And that’s gonna’ be pretty simple. Select the “leaves_generator” object, go to

it’s properties, open the Movement tab... Open the drop-down movement list and select the

Path movement. Now, click on the “Edit” button. The Path Movement toolbar should appear:

Click on the first button to the left (the one with a single line linking a box and an arrow)

selecting the basic “New line” tool. Click at the 503, 10 coordinates of your frame (if you’ll click

a few pixels lower or higher, don’t worry about it) to create a path running from the current

Page 9/20

position of the leaves_generator object (that should x=504, y=322 if I’m not mistaken) to the

point found at x=503, y=0. Push the “Loop the movement” and “Reverse at end” buttons

(those are the fourth and fifth buttons counting from the left) to receive a nice looping path

movement. Click OK to close the Path Movement toolbar and return to your Frame Editor.

When that’s done, it’s time to move on to the next part! Will you manage to complete this

tutorial in one piece? Will Koobare (that’s me, folks!) lend you a helping hand in a time of

struggle? Will we find the answers to all the riddles that were found in the first eight pages of

this epic story? Who was the murderer and why wasn’t the gardener involved? How come

Hurley doesn’t loose any weight and what exactly did Vader mean when he told Luke that he

was his father? And where the heck is Waldo?! All this, and much more, right after these

commercials…

OK, let’s just skip it, throw away all those bad jokes and just head on to Part III, mmm-key? No

advertisements, really. Nothing to see here. Just move on, people, move on...

Part III: It’s time for some coding!

Koobare’s MMF-to-paper coding system

Open the Event Editor. You know what’s it all about, right? Sure you do. If, by any chance,

you’re not too familiar with these here surroundings – better get back to your MMF2 user

manual or download the “Interface Guide” that can be found on Clickteam’s website.

I guess that some of you have already met my MMF2-to-paper event-recording system, that

helped us a lot with my earlier tutorials. If not – read on, it’s pretty simple to learn and really

quite useful. If you know what it’s all about, just skip this introduction and head on to the

scripting. Anyway, here’s the deal:

IF (Condition): [Object for the condition] > Condition group > Condition

THEN (Action): [Object for the action] > Action group > Action

All the conditions are marked in red color, while actions are written in lovely blue. Object

names are always put in [square brackets]. The final condition/action is always in Italic. If we’ll

have a multi-condition event, then we’ll have:

Page 10/20

IF (Condition 1): [Object for condition 1] > Condition group 1 > Condition 1

IF (Condition 2): [Object for condition 2] > Condition group 2 > Condition 2

THEN (Action): [Object for the action] > Action group > Action

Whereas a multi-action event looks like this:

IF (Condition): [Object for condition] > Condition group > Condition

THEN (Action 1): [Object for the action 1] > Action group 1 > Action 1

THEN (Action 2): [Object for the action 2] > Action group 2 > Action 2

THEN (Action 3): [Object for the action 3] > Action group 3 > Action 3

If you’ll have to input anything by keyboard (for example: a value to set the counter to, or a

text that is going to be displayed with the alterable string option – or other things that you use

the Expression Editor for) it will be indicated by coloring the text in green and using < angle

brackets >, like in this example (note that sometimes the given text will be set Italic for easier

detection – it doesn’t really mean anything):

 < Set the Global Value A to 32 >

Additional comments, info and instructions will be put in << double angle brackets >>, using a

different color:

 << Select any wave sound from the MMF2’s sound library >>

There’s not much philosophy in it, you just have to go step-by-step through all the events and

keep one eye on your Event Editor, and the second one on this tutorial. Seems pretty simple,

right? Let’s start coding, then!

Coding the wind

Create all the events listed here, one after one:

1) Firstly, let’s start with the “Always” event… Usually I start with the “Start of Frame”

condition, but this time there’s really no need for it and we won’t even use it in our whole

gamescript. Anyway, our “Always” event will make sure that the speed of our leaves (both the

red_leaf and the green_leaf objects) is always set to the wind_current counter’s value. All of

this is quite simple, really.

Page 11/20

IF: [Special Object] > Always

THEN: [red_leaf] > Movement > Set speed

< input: value("wind_current")*2+5 >

<< Additional way to do this: click on the “Retrieve data from object” button, right-click

on the “wind_current” counter, select “current value” and then input *2 and+5 >>

THEN: [green_leaf] > Movement > Set speed

< input: value("wind_current")*2+15 >

<< Additional way to do this: click on the “Retrieve data from object” button, right-click

on the “wind_current” counter, select “current value” and then input *2 and+15 >>

 << Please note: the number you’re adding to the above equation is fifteen, not five >>

2) Our second event will help us to create smooth speed transitions between the current wind-

speed and the speed that the player (or – when in the “random” mode – the computer) wants

to set… Every 20/100 of a second the current wind speed adjusts itself by 1 to match the

speed that has been set:

IF: [The Timer Object] > Every

 << Set the timer to 20/100 of a second>>

IF: [wind_current] > Compare the counter to a value

 << Check if this counter is Lower than the current value of the wind_overall counter >>

<< To set such a comparison, select Lower from the comparison method drop-down list,

and then either input value("wind_overall") in the comparison edit box, or click on the

“Retrieve data from object” button, right-click on the “wind_overall” counter and select

“current value” from the list >>

THEN: [wind_current] > Add to counter

< input: 1 >

3) Here’s the same event, but this time adjusting the current wind speed if it is higher than the

one set by the player or by the random mode:

IF: [The Timer Object] > Every

 << Set the timer to 20/100 of a second >>

IF: [wind_current] > Compare the counter to a value

 << Check if this counter is Greater than the current value of the wind_overall counter >>

<< To set such a comparison, select Greater from the comparison method drop-down

list, and then either input value("wind_overall") in the comparison edit box, or click on

the “Retrieve data from object” button, right-click on the “wind_overall” counter and

select “current value” from the list >>

THEN: [wind_current] > Subtract from counter

< input: 1 >

Page 12/20

4) It’s now time to create some an event that specifies what would happen if one of the

red_leaf objects bounced right into the destroyer_line object:

IF: [red_leaf] > Collisions > Another object > [destroyer_line]

THEN: [red_leaf] > Destroy

5) The same event as above, but this time for the green_leaf object:

IF: [green_leaf] > Collisions > Another object > [destroyer_line]

THEN: [green_leaf] > Destroy

 Additional coding information

• I’ve decided to skip this in the “Snow & Wind” tutorial, but there’s an easy way to

combine the 4th event and 5th one into a single line: just add a chosen Qualifier to

both the red_leaf and green_leaf objects, and then use their group as the basis for

the collision event. This can be considered as optimizing the code a bit.

• You can find more info on how to use Qualifiers in the “Fusion Player” tutorial.

6) And here’s yet another event… As it was said before, the snow effect will end up in the

second frame, whereas the wind effect will remain in frame numbero uno. This will event will

enable us to jump to frame 2:

IF: [Keyboard & Mouse Object] > The Keyboard > Upon pressing a key

THEN: [Storyboard Controls] > Next frame

Oh, and one more thing: if you haven’t done that yet, save the app, and do it now!

7) Moving on… Create a new event group (right click on the empty event-line and select

Insert > A group of events), name it “Wind is at random mode” and make sure that the

“Active when the frame starts” option is ON. While we’re at it, create another two groups

below: “Wind is player controlled” (make it’s “Active when frame starts” option OFF) and

“Creating leaves” (it should be active when the frame starts). When you’re done, create the

given event inside the first group (“Wind is at random mode”):

Page 13/20

IF: [Special Object] > Group of events > On group activation

 THEN: [Special Object] > Group of events > Deactivate

 << Select the “Wind is player controlled” group >>

THEN: [pcontrolled_button] > Enable

THEN: [strength_button_1] > Disable

THEN: [strength_button_2] > Disable

THEN: [strength_button_3] > Disable

THEN: [strength_button_4] > Disable

THEN: [strength_button_5] > Disable

THEN: [random_button] > Disable

8) Another event that should be created inside the “Wind is at random mode” group… This

one will set the wind_overall counter to a random number between 0 and 49 – this random

number is generated every 5 seconds:

IF: [The Timer Object] > Every

 << Set the timer to 5 seconds >>

THEN: [wind_overall] > Set counter

< input: Random(50) >

9) A short one, enabling the user to switch onto the “Player controlled” mode (create it inside

“Wind is at random mode” group):

IF: [pcontrolled_button] > Button clicked?

THEN: [Special Object] > Group of events > Activate

 << Select the “Wind is player controlled” group >>

Here, let’s take a look at what we’ve got by now (note that it doesn’t have to look identical):

Page 14/20

10) Now it’s time to move on to the next group, the “Wind is player controlled” one. Create this

event inside the previously mentioned group:

IF: [Special Object] > Group of events > On group activation

 THEN: [Special Object] > Group of events > Deactivate

 << Select the “Wind is at random mode” group >>

THEN: [pcontrolled_button] > Disable

THEN: [strength_button 1] > Enable

THEN: [strength_button 2] > Enable

THEN: [strength_button 3] > Enable

THEN: [strength_button 4] > Enable

THEN: [strength_button 5] > Enable

THEN: [random_button] > Enable

11) And here comes a whole series of simple events, very similar to each other – these events

will control what happens when the user clicks on a specific button in order to change the

strength of the wind (all should be created inside the “Wind is player controlled” group):

IF: [strength_button 1] > Button clicked?

THEN: [wind_overall] > Set counter

< input: 10 >

IF: [strength_button 2] > Button clicked?

THEN: [wind_overall] > Set counter

< input: 20 >

IF: [strength_button 3] > Button clicked?

THEN: [wind_overall] > Set counter

< input: 30 >

IF: [strength_button 4] > Button clicked?

THEN: [wind_overall] > Set counter

< input: 40 >

IF: [strength_button 5] > Button clicked?

THEN: [wind_overall] > Set counter

< input: 50 >

12) And yet another button-related event…Enables the player to change to random mode:

Page 15/20

IF: [random_button] > Button clicked?

THEN: [Special Object] > Group of events > Activate

 << Select the “Wind is at random mode” group >>

OK, once again, let’s take a look at what we’ve created by now… Just for orientation:

13) When all those button-clicking events are done, we can leave the “Wind is player

controlled” group and head to the next one – “Creating leaves”. This group will contain a

bunch of counter-related conditions, spawning our leaves on every X amount of time (note

that the timer settings can be changed – if you wish, you can input your own time settings):

IF: [The Timer Object] > Every

 << Set the timer to 04.03 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the red_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

Page 16/20

IF: [The Timer Object] > Every

 << Set the timer to 05.31 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the red_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

IF: [The Timer Object] > Every

 << Set the timer to 07.01 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the red_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

IF: [The Timer Object] > Every

 << Set the timer to 02.65 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the green_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

IF: [The Timer Object] > Every

 << Set the timer to 04.12 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the green_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

IF: [The Timer Object] > Every

 << Set the timer to 08.45 seconds >>

THEN: [Create New Objects] > Create Object

 << Select the green_leaf object >>

 << Set the coordinates to x=0, y=0 relatively to the “leaves_generator” object >>

 Additional idea: Autumn comes to town!

• Would you like to have a bit more leaves flying around? Just change the timer’s

settings in the events above to 01.87, 02.97, 04.69, 01.06, 02.26 and 04.67 – and

then observe! Wow, that’s a lot of leaves, ain’t it?

• Please, be aware that setting the timer to the numbers given above can make your

game work a bit slower on some older computers, or even bring it to a total halt!

Page 17/20

OK, when that’s done, we can go for the next even… What? What do you mean there’s no

more left? Oh? Well… Hooray then! That means we’re done! We have now created a fully

functional wind effect to use in your games and apps… Save your workfile and test the

application – it really works! And, I must say, works quite well! Congratulations, lad! The first

section of this tutorial is over! It’s now time for the second one… And this one will be a bit

more challenging for ya’!

Part IV: The challenge

So… You’ve just finished the first section, haven’t

you? Sure you did. Wasn’t it just a walk in the

park? Quite easy? Too easy, perhaps? Like taking

candy from a baby? Sure it was. But that’s going to

change right now, and when I say “change”, I

mean “change radically”. No more step-by-step

instructions. No more “visual aids” and helpful

screenshots all around you. No, my dear padawan,

it’s time to test your own skills, to take advantage

of what you have learned! It’s time to show your

quality, to reveal the hardcore clicker that’s trapped

inside you, struggling to get out! Yes, you’ve got

me right – I want YOU to create the snow effect,

without step-by-step guidance!

Are you frightened? Yes? Well, not nearly frightened enough! This will be a bumpy road, but

I’m pretty sure that you’ll manage to get to the finish line. And think of the benefits… There’s

only one way to learn MMF2’s usage faster than by following a tutorial… And that one way is

by creating a small project by yourself, with only a couple of tips & tricks shown to you before

the start! You’ve already learned what you need – it’s now just a matter of using your skills!

If, by some accident, ya’ shall not succeed… If you fail… Well, then nothing’s bad gonna’

happen, really. If you’re stuck with a problem that you cannot solve, just contact me by e-mail

and I’ll try to help you (you can find my e-mail address at the end of this document).

Anyways… Let’s not waste any more time, shall we? Prepare yourself! Take a deep breath

before the plunge, gather your strength and let’s get going!

Page 18/20

Preparing the frame, importing the objects

First of all, we need to prepare our frame and import all the needed objects. Create a new

frame, then find the “weather2library.mfa” file (you know where to look, right?), open it and

go into it’s second frame (it is named – how convenient! – “It's snowing!”). Select all the

objects there, copy them into your application and place them in a way, that will make the

“Sky_QB” quick backdrop perfectly fit the frame – just like you did a couple of pages ago. Got

it? Great. Now, create two buttons – a “Light snow” button and a “Heavy Snow” button. And…

You already have all the needed objects around you, buddy!

Here’s a little screenshot showing all the objects that you should have by now… And believe

me – this is the last screenshot that you’ll get in this tutorial, so just enjoy it.

Why are there so many snowflake objects? – you could wonder. Well, that’s just because I’d

like this effect to look a bit random. Each and every one of those little snowflake objects has a

differently programmed movement (they all use the Sinewave movement – but it’s not using

the same settings for all the objects) – and thus this really can look like a genuine snowfall.

Page 19/20

What you need to do…

Your basic objective is to create a stunning snow effect, controllable by two buttons – if the

first button is pushed, the snow is set to “light mode”, and thus the snowfall is lighter. When

you push the “heavy snow” button – you’re going to unleash a real blizzard! You should use

your knowledge, gained throughout this tutorial, to create this effect with the use of your

“snow_generator” object, 6 different snowflake objects, a “destroyer_line” object and

previously mentioned two buttons.

What you need to know…

First of all – using event groups is going to be essential. You could also use an Alterable

Value or a Counter to control the frequency of the snowfall, but using groups will not only

speed up the creation process, but will also make your project better organized and optimized.

Also, note that all the snowflake objects have been added to a qualifier group “Bonus” – this

info can prove quite useful, believe me.

Second of all – all the techniques you need to know were already used on the pages of this

tutorial. Don’t be fooled by the fact that in the wind effect frame the generator was moving up-

and-down, whereas your current one is going to move horizontally – this is still the same thing,

and if you’ll remember that, you’ll succeed in no time. All the snowflakes have already been

set up for your convenience (they already have both their movements and fade-out animations

selected), but – if you wish – you can reset their settings and set them up yourself, just to

experiment a bit with Gwerdy’s Sinewave movement.

Try to remember that creating a very large number of alpha-channeled objects can really

make your production unplayable on older computers. Keep that in mind when selecting the

time settings for your snow-creating events – sometimes just a fraction of a second can really

make a difference. And don’t forget about the “destroyer_line” object!

You can find a completed and fully functional snow-effect project within the same archive that

this tutorial was in. Just open the tricks_snow&wind.mfa file and take a peak at it’s second

frame. Also, if you’re a bit lost, but still not lost enough to mail me for help, you can take a look

at the “Enhancing the feel: It’s raining!” tutorial, where you can find a couple of hints that can

come in handy.

So… are you up for a challenge? Sure you are! Good luck, then! You’ll do this in no time!

Page 20/20

And that’s the way the cookie crumbles, folks!

Hope that you found all of this – both the main tutorial and the “homework” part – pretty

educative and fun. There’s a lot more to MMF2 than just the features presented in this tutorial

– and we’ll soon venture on yet another expedition to the wonderful world of multimedia-

fusioning! And in the meantime – if you haven’t done it yet – check all the other tutorials on

Clickteam’s website! And remember: practice makes perfect!

Thanks for your time and see you again soon!

Cheers!

marchewkowy@gmail.com

If you have any questions, suggestions or just need help –

 mail me at marchewkowy@gmail.com

Once again: thanks to Gwerdy!

Gwerdy, thank you for your movement pack! It really simplifies the way of using sinewave-based

movements in MMF2, and it’s a great addition to the tools that an average clicker – like me – has in his

hands! Thanks again and keep them comin’! ;)

